Site icon Medkurs.ru

8. Специфика ферментативного катализа

Любая химическая реакция характеризуется, кроме принципиальной возможности ее протекания (обусловленной законами термодинамики), скоростью процесса. Скорость ферментативной реакции — изменение [S] или [P] в единицу времени. Измерив ее скорость, т. е. скорость в присутствии фермента, мы должны измерить скорость реакции и в отсутствии фермента (спонтанно протекающая реакция). Именно эта разность и характеризует работу фермента.

Измеряя скорость реакции всегда надо измерять начальную скорость процесса, т. е. скорость ферментативной реакции, в достаточно короткий промежуток времени, когда концентрация субстрата меняется, не настолько значительно, чтобы это отразилось на скорости процесса. Единицы измерения скорости реакции могут быть разными. Лучше пользоваться молярными единицами, а время — это минуты или секунды, реже часы. Поэтому скорость реакции может выражаться, например, в мкмоль/мин или ммоль/час. Величина скорости определяется законом действующих масс. В общем случае скорость химической реакции пропорциональна произведению концентрации реагирующих веществ. В случае ферментативной кинетики — одно из реагирующих веществ — фермент, концентрация которого на много порядков меньше, чем концентрация субстрата. Это определяет некоторые особенности кинетики ферментативного катализа.

V = k+2 [E] x [S].

Зависимость скорости ферментативной реакции от концентрации ([E]) при постоянной и довольно большой концентрации субстрата ([S]>>[E], [S]=const).

Отклонение от линейности графика при очень высокой концентрации фермента возникает из-за нехватки субстрата, поэтому снижается скорость поступления субстрата на активный центр фермента. Определять скорость ферментативной реакции надо только в том диапазоне концентраций фермента, в котором график линеен.

Линейность этого графика позволяет выразить его одной цифрой — тангенс угла наклона к оси абсцисс. Этот тангенс представляет собой величину активности фермента. Именно работа (эффективность) каждого фермента количественно характеризуется величиной его активности, т. е. величиной скорости ферментативной реакции в расчете на единицу количества фермента. Единицы активности могут быть различными: мкмоль S/мин.мг или мкмоль S/мин.мл сыворотки крови.

Молекулярная активность — это количество молекул субстрата, которые превращаются одной молекулой фермента за одну минуту при 30 °С и прочих оптимальных условиях. Преимущество этой единицы — в том, что можно сравнивать не только активность ферментов из разных источников, но и эффективность разных ферментов. Например, молекулярная активность фермента каталазы составляет 5 х 106, а карбоангидразы — 36 х 106.

Из линейности графика следует, что по скорости реакции можно судить о количестве фермента:

  1. катал — это количество фермента, которое обеспечивает превращение 1 моля субстрата за 1 с;
  2. юнит — это количество фермента, которое превращает 1 мкмоль субстрата за 1 мин. 1 юнит = 16,67 нкатал.

Зависимость скорости ферментативной реакции от концентрации субстрата при [E] = const и [S] >> [E]: чем выше концентрация субстрата, тем выше скорость реакции. Эта зависимость гиперболическая.

Предельное значение, к которому стремится гипербола — Vmax данной реакции — характеризует максимальную работоспособность фермента: Vmax=k+2 x [E].

Таким образом, Vmax — это предел, к которому стремится скорость реакции при бесконечном повышении концентрации субстрата.

kм — это константа Михаэлиса. Она численно равна той концентрации субстрата, при которой скорость реакции составляет половину от максимального значения.

Эта кривая описывается уравнением Михаэлиса-Ментен.

Физический смысл Км заключается в том, что она представляет собой константу равновесия между двумя реакциями, приводящими к распаду фермент-субстратного комплекса и той реакцией, которая ведет к образованию этого комплекса.

Ks — субстратная константа. Характеризует константу равновесия 1-го этапа ферментативной реакции. Следовательно, Км обычно тоже довольно близка к Кs. Следовательно, Км, как и Кs, характеризует сродство субстрата к данному ферменту. Но экспериментально определить k-1 и k+2 очень трудно, поэтому трудно определить и Кs. А вот Км можно просто определить, используя координаты Лайнуивера-Бэрка.

С помощью Км можно характеризовать сродство данного фермента к данному субстрату. Чем меньше Км, тем больше сродство фермента к данному субстрату, а значит тем больше равновесие первого этапа ферментативной реакции сдвинуто вправо — в сторону образования фермент-субстратного комплекса. Значит, будут созданы наилучшие условия для протекания и второго этапа ферментативного процесса. При таких условиях для достижения эффективного превращения субстрата требуется малая концентрация субстрата. Значит, и Vmax теоретически может быть достигнута при малых количествах субстрата.

Если Км высока, то это означает, что сродство фермента к такому субстрату низкое и реакция при небольших концентрациях субстрата протекает неэффективно.

Км и Vmax — это две кинетические константы, с помощью которых можно характеризовать эффективность работы фермента, в том числе и in vivo.

Exit mobile version